Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 96(8): e0201321, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1779314

RESUMEN

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. IMPORTANCE The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.


Asunto(s)
Lactamas , Leucina , Nitrilos , Péptido Hidrolasas , Prolina , Antivirales/química , Antivirales/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Nitrilos/química , Nitrilos/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Prolina/química , Prolina/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , SARS-CoV-2/química , SARS-CoV-2/enzimología , Tratamiento Farmacológico de COVID-19
2.
Sci Rep ; 12(1): 2505, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1747189

RESUMEN

Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 µM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Cristalografía por Rayos X , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Nitrilos/química , Nitrilos/metabolismo , Nitrilos/farmacología , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
3.
Chem Commun (Camb) ; 57(72): 9096-9099, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1373453

RESUMEN

We present a detailed computational analysis of the binding mode and reactivity of the novel oral inhibitor PF-07321332 developed against the SARS-CoV-2 3CL protease. Alchemical free energy calculations suggest that positions P3 and P4 could be susceptible to improvement in order to get a larger binding strength. QM/MM simulations unveil the reaction mechanism for covalent inhibition, showing that the nitrile warhead facilitates the recruitment of a water molecule for the proton transfer step.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Simulación de Dinámica Molecular , Nitrilos/química , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dominio Catalítico , Proteasas 3C de Coronavirus/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Nitrilos/metabolismo , Prolina/química , Prolina/metabolismo , Inhibidores de Proteasas/metabolismo , Teoría Cuántica , SARS-CoV-2/aislamiento & purificación , Termodinámica
4.
Bioorg Med Chem Lett ; 50: 128333, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1363893

RESUMEN

Specific anti-coronaviral drugs complementing available vaccines are urgently needed to fight the COVID-19 pandemic. Given its high conservation across the betacoronavirus genus and dissimilarity to human proteases, the SARS-CoV-2 main protease (Mpro) is an attractive drug target. SARS-CoV-2 Mpro inhibitors have been developed at unprecedented speed, most of them being substrate-derived peptidomimetics with cysteine-modifying warheads. In this study, Mpro has proven resistant towards the identification of high-affinity short substrate-derived peptides and peptidomimetics without warheads. 20 cyclic and linear substrate analogues bearing natural and unnatural residues, which were predicted by computational modelling to bind with high affinity and designed to establish structure-activity relationships, displayed no inhibitory activity at concentrations as high as 100 µM. Only a long linear peptide covering residues P6 to P5' displayed moderate inhibition (Ki = 57 µM). Our detailed findings will inform current and future drug discovery campaigns targeting Mpro.


Asunto(s)
COVID-19/patología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Lactamas/química , Lactamas/metabolismo , Leucina/química , Leucina/metabolismo , Nitrilos/química , Nitrilos/metabolismo , Péptidos/química , Péptidos/metabolismo , Peptidomiméticos/química , Peptidomiméticos/metabolismo , Prolina/química , Prolina/metabolismo , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA